AMTNJ $38^{\text {th }}$ Annual Contest Solutions Key

1) 120 Nothing more than a counting problem.
2) $0 \quad$ Drawing the altitude to the base creates two 6-8-10 triangles for each given triangle. Therefore the areas are equal.
3) $5 \sqrt{2}$ Points of intersection are $(-3,3)$ and $(2,8)$.
4) -64 Solving $m=-3$ and $n=1 / 3$ therefore $m^{2}=9$ and $n^{2}=1 / 9$. Therefore $\mathrm{p}=9, \mathrm{q}=-82$, and $\mathrm{r}=9$.
5) 406.87 Area of circle is $12.5^{2} \pi$ and area of triangle is $1 / 2(7)(24)$
6) $1 / 9 \quad$ Of the 18 possible 4 digit numbers only $4021,4201,2401$, and 2041 are possible primes with 4021 and 4201 being the primes.
7) 32 Let the roots be $a-d$, a, and $a+d$. Solving $a=8$ and $d=3$.
8) $\frac{1}{2} x y \quad$ Let one diagonal be the base of two adjacent triangles.
9) $\frac{25 A-50}{24}$ Of the 48 remaining numbers, their sum is $50 \mathrm{~A}-100$.
10) $\log _{c}\left(\frac{b^{a}}{\pi b}\right)$ Rules of logarithms
11) $\frac{1}{2} z \quad$ Triangle $A X C$ has the same base as $A B C$ and $1 / 2$ the height because EF is a midline. Therefore $1 / 2$ the area.
12) 10.5 Use either the remainder theorem or synthetic division.
13) $2: 5$ Area of smaller square is $4 R^{2} / 5$ and area of larger square is $R^{2} / 2$, therefore $\left(\frac{4 R^{2}}{5}\right) \div\left(\frac{R^{2}}{2}\right)$
14) $13\left(\frac{12!}{5!\times 7 \times 6!}\right)+\left(\frac{12!}{6 \times 5!\times 6!}\right)=\left(\frac{6 \times 12!+7 \times 12!}{6 \times 5!\times 7 \times 6!}\right)=\left(\frac{13!}{6!\times 7!}\right)$
15) $\frac{\sqrt{3}}{2} \quad \cos (\mathrm{x})=\cos (47+13)=\cos (60)$
