AMTNJ 38th Annual Contest Solutions Key

- 1) 120 Nothing more than a counting problem.
- 2) 0 Drawing the altitude to the base creates two 6-8-10 triangles for each given triangle. Therefore the areas are equal.
- 3) $5\sqrt{2}$ Points of intersection are (-3,3) and (2,8).
- 4) -64 Solving m=-3 and n=1/3 therefore $m^2 = 9$ and $n^2 = 1/9$. Therefore p=9, q=-82, and r=9.
- 5) 406.87 Area of circle is $12.5^2\pi$ and area of triangle is $\frac{1}{2}(7)(24)$
- 6) 1/9 Of the 18 possible 4 digit numbers only 4021, 4201, 2401, and 2041 are possible primes with 4021 and 4201 being the primes.
- 7) 32 Let the roots be a-d, a, and a+d. Solving a=8 and d=3.
- 8) $\frac{1}{2}xy$ Let one diagonal be the base of two adjacent triangles.
- 9) $\frac{25A-50}{24}$ Of the 48 remaining numbers, their sum is 50A-100.
- 10) $log_c(\frac{b^a}{a^b})$ Rules of logarithms

- 11) $\frac{1}{2}z$ Triangle AXC has the same base as ABC and $\frac{1}{2}$ the height because EF is a midline. Therefore $\frac{1}{2}$ the area.
- 12) 10.5 Use either the remainder theorem or synthetic division.
- 13) 2:5 Area of smaller square is $4R^2/5$ and area of larger square is $R^2/2$, therefore $\left(\frac{4R^2}{5}\right) \div \left(\frac{R^2}{2}\right)$

14) 13
$$\left(\frac{12!}{5!\times7\times6!}\right) + \left(\frac{12!}{6\times5!\times6!}\right) = \left(\frac{6\times12!+7\times12!}{6\times5!\times7X6!}\right) = \left(\frac{13!}{6!\times7!}\right)$$

15)
$$\frac{\sqrt{3}}{2}$$
 cos(x)=cos(47+13)=cos(60)