41 ${ }^{\text {st }}$ Annual AMTNJ High School Mathematics Contest

Answer Key

1. 45
2. $\frac{2}{9}$ or $0 . \overline{2}$ or 0.222
3. 360
4. 53
5. $1+\sqrt{3}$
6. $\frac{2}{9}$ or $0 . \overline{2}$ or 0.222
7. $\frac{31}{5}$ or $6 \frac{1}{5}$ or 6.2
8. 5,636
9. 4
10. 46
11. $\sqrt{30}$
12. 12
13. 28
14. 11
15. $\frac{50 \sqrt{3}-25 \pi}{2}$ or $25 \sqrt{3}-12.5 \pi$
16. The dimensions a, b and c of a rectangular prism are in the ratio 3:5:7. If the length of the diagonal is $3 \sqrt{83}$ units, what is the value of $a+b+c$?

Solution: The length of the diagonal $=\sqrt{a^{2}+b^{2}+c^{2}}=\sqrt{(3 x)^{2}+(5 x)^{2}+(7 x)^{2}}=\sqrt{83 x^{2}}=3 \sqrt{83}$.
Therefore $x=3$, and the sum $=9+15+21=45$.
2. Given positive integers m and n that differ by 35 , such that $m^{2}+n^{2}=2017$.

Find the value of $m+n$.

Solution 1: $(m-n)^{2}=1225=2017-2 m n \Rightarrow m n=396 \Rightarrow(m+n)^{2}=2017+2 m n=2809 \Rightarrow m+n=53$.

Solution 2: $m=n+35$ and $m^{2}+n^{2}=2017 \Rightarrow n^{2}+35 n-396=0 \Rightarrow n=9 \Rightarrow m+n=53$.
3. Find the y-coordinate of the point on the line $y=2 x+3$ that is closest to the point $(0,7)$.

Solution 1: Let $(a, 2 a+3)$ be that closest point. Then, the distance $\sqrt{(2 a+3-7)^{2}+(a-0)^{2}}$ is minimum when $(2 a-4)^{2}+a^{2}=5 a^{2}-16 a+16$ is minimum $\Rightarrow a=\frac{8}{5}$, and the y-coordinate $=2\left(\frac{8}{5}\right)+3=\frac{31}{5}$.
Solution 2: The closest point on the line is the intersection between the line and the perpendicular to it that passes through $(0,7)$. The perpendicular has equation $y=-\frac{1}{2} x+7$, and the intersection is $\left(\frac{8}{5}, \frac{31}{5}\right)$.
4. Some values of a function f are shown in the following table:

x	-5	-3	-1	1	3	5	7	9
$f(x)$	-54	-20	-2	0	-14	-44	-90	-152

If $g(x)=-\frac{2}{3} f(1-2 x)+f(|x|)$, what is the value of $g(-3)$?

Solution: $g(-3)=-\frac{2}{3} f(7)+f(3)=-\frac{2}{3}(-90)-14=46$.
5. What is the largest possible number of intersections between eight distinct lines in a plane?

Solution: The number of points will be maximum when the lines are not parallel, and no more than two lines intersect in the same point. n lines intersect in a most $\frac{n(n-1)}{2}$ points.
The following table shows the pattern for these triangular numbers:

Number of lines	Maximum points of intersection
2	1
3	$1+2=3 \quad$ the third line intersects the two others
4	$1+2+3=6$ the 4 th line intersects the three others
5	$1+2+3+4=10$
\ldots	\ldots
8	$1+2+3+4+5+6+7=28$

6. If you randomly arrange 5 different math books and 5 different art books on a shelf, what is the probability that you will have two math books at the two ends?

Solution: Regardless of the arrangement of the eight books in the middle, we need to consider the two ends. There are ${ }_{10} C_{2}=45$ different ways of selecting any two books, and ${ }_{5} C_{2}=10$ different ways of choosing two math books.
Therefore, the probability of having two math books at the ends is $\frac{10}{45}=\frac{2}{9}$.
7. Find the exact value of the infinite continued fraction $2+\frac{1}{1+\frac{1}{2+\frac{1}{1+\frac{1}{2+\ldots}}}}$.

Solution: Let $x=2+\frac{1}{1+\frac{1}{2+\frac{1}{1+\frac{1}{2+\ldots}}}}$. Then, $x=2+\frac{1}{1+\frac{1}{x}} \Rightarrow x-2=\frac{x}{x+1} \Rightarrow x^{2}-2 x-2=0 \Rightarrow x=1+\sqrt{3}$.
Note that $x=1-\sqrt{3}<0$ and cannot be the value of this positive expression.

8. The peak of a mountain can be seen from points A and B that are both 5,200 feet above sea level, and are 500 feet apart. The angle of elevation at A and B are 20° and 32° respectively. Find the elevation from sea level at the mountain peak. Round your answer to the nearest foot.

Solution: $C D=B C \tan 32=(500+B C) \tan 20 \Rightarrow B C=\frac{500 \tan 20}{\tan 32-\tan 20} \approx 697.53$ $C D=697.53 \tan 32 \approx 435.865 \Rightarrow$ peak elevation $=5,635.865 \approx 5,636$ feet above sea level.
9. In the figure shown on the right, $\overline{F B}$ is tangent to the circle with center C, and $\overline{A B}$ intersects the circle in point H.
If $A H=7 \mathrm{~cm}$ and $H B=3 \mathrm{~cm}$, find the exact length of $\overline{F B}$.

Solution: $B A \cdot B H=B F^{2} \Rightarrow B F=\sqrt{30}$.
10. How many integer solutions does the inequality $|n-9|<6$ have?

Solution 1: $n-9$ could be $0, \pm 1, \pm 2, \pm 3, \pm 4, \pm 5$, and these lead to 11 integer solutions to $|n-9|<6$.
Solution 2: There are 11 integers for which $3<n<15$.
11. In quadrilateral $Q U A D, Q U=21, U A=20, A D=15, U D=25$ and $A Q=29$. Find the area of $Q U A D$.

Solution: $Q U^{2}+U A^{2}=A Q^{2}$ and $U A^{2}+A D^{2}=U D^{2} \Rightarrow Q U A$ and $U A D$ are right triangles.
$\therefore Q U A D$ is a right trapezoid, and its area is $\frac{1}{2}(15+21) \cdot 20=360$.

12. A coin with diameter 1 inch is tossed onto a 24×18 in 2 flat surface covered with black and white square tiles as shown. The side of each tile is 3 inches.

What is the probability that the coin lands entirely inside a white tile?

Here's a partial view of the surface:

Solution: The coin will be entirely inside a 3×3 square when the center of the coin is inside a 2×2 square as shown. Therefore, the probability of the coin landing inside a square of side 3 is $\frac{\text { Area of small square }}{\text { Area of large square }}=\frac{4}{9}$. There are half as many white squares as black squares on the surface, Therefore, the probability of landing on a white square is $\frac{1}{2} \cdot \frac{4}{9}=\frac{2}{9}$.
13. How many points do the graphs of $f(x)=x^{3}+1$ and $g(x)=e^{0.3 x}$ have in common?

Solution: The curves intersect exactly 4 times. The three intersection points are visible when the functions are graphed in a small window such as $[-2,2] \times[0,2]$; however, the value of the exponential function will exceed the value of the power function, and this will only be possible if the two curves intersect a fourth time.
The curves intersect when $x=0$ and $x \approx-0.527,0.572$, and 35.772.
14. A look and say sequence is a sequence of integers that begins with a single digit, in which the next term is obtained by describing the previous term.
For example, the sequence starting with the single digit 1 is $1,11^{*}, 21^{* *}, 1211^{* * *}, \ldots$
*there is one 1 in the previous term,

${ }^{* * * *}$ there is one 2 and one 1 in the previous term.
The fourth term of this sequence has 4 digits.
How many digits are in the seventh term of the look and say sequence that begins with 2 ?

Solution: The sequence is $2,12,1112,3112,132112,1113122112,311311222112, \ldots$ in which the seventh term has 12 digits.
15. The image shows an equilateral triangle with perimeter 30 units. Each circular arc is centered at a vertex, and has radius that is half the length of each side. Find the exact value of the area of the shaded region with vertices A, B, and C.

Solution: Area of the equilateral triangle $=\frac{1}{2}(5 \sqrt{3})(10)=25 \sqrt{3} u^{2}$
Area of the three circular sectors $=3\left(\frac{1}{6} \pi(5)^{2}\right)=\frac{25 \pi}{2} u^{2}$
\therefore Area of deltoid $A B C=\frac{50 \sqrt{3}-25 \pi}{2} u^{2}$

