	Answers	
1. 32	2. 2023	3. 161
4. $-\frac{71}{12}$ or $5\frac{11}{12}$ or -5.91666 or $-5.91\overline{6}$	5. √6	6. $\frac{21\sqrt{3}}{4}$ or 9.093
7. 37,950	8. $13\sqrt{3} - \frac{13}{3}\pi$ or 8.903	9. 23

Solutions

1. Let
$$f(x) = x^2 + ax + b$$
. If $f(-3) + f(3) = 0$, find $f(-5) + f(5)$

Solution: $f(-3) + f(3) = 9 - 3a + b + 9 - 3a + b = 0 \Rightarrow 18 + 2b = 0 \Rightarrow b = -9$ $\therefore f(-5) + f(5) = 25 - 5a - 9 + 25 + 5a - 9 = 32$

2. If the longest side of a right triangle is $10^{2023} + 1$ units, and the other sides are $10^{2023} - 1$ units and $n10^m$ units, find the value of $n \times m$.

Solution: The third side = $\sqrt{(10^{2023} + 1)^2 - (10^{2023} - 1)^2} = \sqrt{2 \cdot 2 \cdot 10^{2023}} = 2 \cdot 10^{\frac{2023}{2}} \implies n \times m = 2023$

3. In the sequence of triangles shown below, stage 0 has one triangle and stage 1 has five triangles. If the pattern continues, how many triangles will stage 4 have?

Solution 1:	Stages		stage 0	stage 1	stage 2	stage 3	stage 4
	Number	of triangles	1	1+4=5	5+4(3)=17	17 + 4(9) = 53	53 + 4(27) = 161
Solution 2:	Stage n Number of triangles = $2(3^n) - 1$						
	stage 0	1					
	stage 1	1 + 3 + 1 =	5				
	stage 2	1 + 3 + 9 + 3	3 + 1 = 17				
	stage 3	1 + 3 + 9 + 3	27 + 9 + 3	+1 = 53			
	stage 4	1 + 3 + 9 + 1	27 + 81 +	27 + 9 + 3	+1 = 161		

4. A function f has zeros at 3, $\frac{5}{8}$ and $-\frac{2}{3}$. If $g(x) = -3f\left(-\frac{x}{2}\right)$, what is the sum of the zeros of g?

Write your answer in exact form.

Solution: g is obtained by stretching f horizontally by a factor of 2, reflecting it in the y-axis, stretching it vertically by a factor of 3, then reflecting over the x-axis. Only the first two transformations have an effect on the zeros. When f is reflected and stretched horizontally, 3, 5/8, and -2/3 shift to -6, -5/4 and 4/3 respectively, and their sum $= -6 - \frac{5}{4} + \frac{4}{3} = -\frac{71}{12}$ or $5\frac{11}{12}$ or the repeating decimal -5.91666 ... or -5.91 $\overline{6}$

5. Water in a large cylindrical tank is 100 inches deep. When a cylinder with a smaller base is placed in the tank, the water level rises to 120 inches, as shown on the right.

If the large tank has radius *R*, and the smaller cylinder has radius *r*, find the exact value of $\frac{R}{r}$.

Figure is not drawn to scale

Solution: $100\pi R^2 = 120\pi R^2 - 120\pi r^2$ because the volume of water does not change. $\Rightarrow 10R^2 = 12R^2 - 12r^2 \Rightarrow R^2 = 6r^2 \Rightarrow \frac{R}{r} = \sqrt{6}.$

6. Equilateral triangle *PQR* is inside another equilateral triangle *ABC*, with *P*, *Q* and *R* along sides *AB*, *BC* and *CA* respectively, one unit away from each vertex as shown in the figure. If AB = BC = CA = 6, find the area of triangle *PQR*.

7. In a lottery game at the local fair, a player chooses four distinct numbers between 1 and 25 for the chance to win \$10,000. To win, your 4 numbers must match the 4 randomly chosen numbers at the drawing. Each play costs \$3, and you can play this game multiple times.

 Play for \$3

 Pick 4 for a chance to win \$10,000

 1
 2
 3
 4
 5

 6
 7
 8
 9
 10

 11
 12
 13
 14
 15

 16
 17
 18
 19
 20

 21
 22
 23
 24
 25

What is the least amount you must spend to guarantee a win?

Solution: To guarantee a win, all combinations of 4 distinct numbers 1 through 25 must be played. This is $\frac{25\cdot24\cdot23\cdot22}{4!} = 12,650. \text{ At }\$3 \text{ per game, the least amount spent to guarantee a win would be }\$37,950.$

8. Two lines that intersect at *I* form 120°, and the two circles with radii 2 and 3 are tangent to the lines at points *F*, *G*, *H* and *K* as shown in the figure on the right. What is the area of the shaded region?

Solution: ΔIKB and ΔIFA are half equilateral triangles and their areas are $\frac{9\sqrt{3}}{2}$ and $\frac{4\sqrt{3}}{2}$ respectively. The areas of circular sectors *KBB*' and *FAA*' are $\frac{3}{2}\pi$ and $\frac{2}{3}\pi$ respectively. \therefore The area of the shaded region = $(9\sqrt{3} - 3\pi) + (4\sqrt{3} - \frac{4}{3}\pi) = 13\sqrt{3} - \frac{13}{3}\pi \approx 8.903$

9. The n^{th} term a_n of a sequence of numbers a_1, a_2, a_3, \dots is defined by $a_n = a_{n-a_{n-1}} + a_{n-a_{n-2}}$, where $a_1 = 1$ and $a_2 = 2$.

Find $a_1 + a_2 + a_3 + \dots + a_7$, the sum of the first 7 terms of this sequence.

Solution: Given:
$$a_1 = 1$$
 and $a_2 = 2$.
 $a_3 = a_{3-a_2} + a_{3-a_1} = a_1 + a_2 = 3$
 $a_4 = a_{4-a_3} + a_{4-a_2} = a_1 + a_2 = 3$
 $a_5 = a_{5-a_4} + a_{5-a_3} = a_2 + a_2 = 4$
 $a_6 = a_{6-a_5} + a_{6-a_4} = a_2 + a_3 = 5$
 $a_7 = a_{7-a_6} + a_{7-a_5} = a_2 + a_3 = 5$
 $\therefore a_1 + a_2 + \dots + a_7 = 23$